Thermal stress analysis of hollow cylinder
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Analytical solution

Consider a hollow infinite cylinder with inner radius R; and outer radius Rs. Under
the axisymmetric condition, we consider a stationary temperature field described by

the following equation
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with x the thermal conductivity. We assume that x is constant and the influx of the
heat power is positive by denoting ¢ = —¢q; , we can derive the analytical solution to
the axisymmetry thermal problem
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with T the temperature increment from the initial state, which is zero in this problem.
Under such temperature field, the induced stresses of the cylinder are given by
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where v = XA+ 2u, 8 = «a(3X + 2u) with A, the Lamé elastic constant, p the shear
modulus, and «, the line thermal expansion coefficient.
By omitting the source term, the momentum balance equation takes the form
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Substituting the stress expressions (4) into the momentum balance equation (5)
leads to an equation of radial displacement as
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Substituting the temperature solution (3) into eqn (6) gives
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Integrating eqn (7) twice yields the analytic solution of radial displacement induced
by the temperature field described by eqn. (1) and (2):
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where Ay and A; are coefficients that can be determined by the boundary conditions.
Furthermore, the radial stress can be derived as
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We assume the cylinder surface are traction free, that is
0‘,~|}:\{1 - 0, 0‘,~|}:\{2 = 0, (10)
To obtain the coefficients, we rewrite eqn (9) into the following form

_ qRup qR1 B
op = — 0 A+ ¢¥)Inr+ Ton

2040 F 0w
- [%m (RQ) +Tb} (11)

Applying the boundary conditions to eqn (11) yields the coefficients as
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Eventually, the radial stress is obtained as
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It is interesting to point out that the outer surface temperature does not has any
influence to the radial stress under the traction free boundary condition.

GS/RF results and comparision
The problem is solved by using GeoSys/Rockflow and the analytical solution with con-

stants T, = 25°C, ¢ = 30W/m?, R1 = 4.5m and Ry = 50m and material parameters
given in Table 1

Table 1: Material properties for TM coupled axisymmetrical problem

Property Value Unit
Young’s modulus 2.5 x 103 M Pa
Poisson’s ratio 0.25 ——
Thermal expansion 4.25x107°  ——
Thermal conductivity 5.5 W/m°C

Fig. 1, 2 and 3 plot the obtained variables along the radial direction. The numerical
results agree well with the analytical ones.
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Figure 1: Profile of temperature
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Figure 2: Profile of the radial displacement
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Figure 3: Profile of the radial stress



