
Introduction 

Rock masses may present anisotropy in their shear strength, due to the presence of one or 

more plane of weakness. External or internal loads (due to pressure or temperature change or 

mass removal) may change the stress state acting on the weak plane. Consequently, plastic 

failure may happen even under compressive load.  

The failure may happen in two modes: a sliding failure on the weak plane or an intrinsic failure 

of the rock mass. The rock matrix is expected to behave elastically or at the worst in a brittle 

way, being represented by a non-associated Mohr-Coulomb behavior, while the sliding failure 

is represented by the evaluation of Mohr-Coulomb criteria as the on an explicitly defined plane 

The original approach developed by Jaeger (1960) is here implemented and tested in 

OpenGeoSys, to reproduce the uniaxial compressive strength dependency on loading 

direction.  

The plane of weakness model is suitable when a single, well defined orientation of 

discontinuity is present, as noted by Brady and Brown (2013). It is rather straightforward to 

extend the model presented here to include 2 or more plane of weakness orientations. 

1. Plasticity 
The plastic behavior of the media is evaluated according to the Mohr-Coulomb criterion, both 

for the rock matrix and for the oriented plane of weakness. Internal cohesion c0 and friction 

angle 0 characterize the maximum allowed shear stress  for the rock matrix failure at a given 

normal effective stress : 

𝜏𝑚𝑎𝑥 = tan(𝜃0) 𝜎𝑛
′ + 𝑐0                                                           [1] 

While failure along the weakness plane is characterized by internal cohesion cpw and friction 

angle pw, as well as by stresses calculated on the plane of weakness (shear pw and normal 

pwn
: 

𝜏𝑝𝑤𝑚𝑎𝑥
= tan(𝜃𝑝𝑤)𝜎𝑝𝑤𝑛

+ 𝑐𝑝𝑤                                                           [2] 

More in detail, the Given a stress tensor ii expressed in a Cartesian reference system xyz, the 

components are rotated to the local reference system x’y’z’, where the z’ direction is the 

direction normal to the plane and the x’ and y’ are the in-plane directions.  

The rotation matrix A to express the stress tensor on the reference system of the plane of 



weakness having normal (nx,ny,nz) is performed by assembling the rotation matrix (for 𝑛𝑧 <

1):   
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                                               [3] 

If nz=1, all the elements are null, apart from the bottom right element being 1. The stress 

tensor in the plane of weakness reference system can be calculated as 

𝜎′̿ = 𝑨𝜎̿𝑨𝑇 , or component-wise 𝜎𝑖′𝑗′ = 𝑎𝑖′𝑘𝑎𝑗′𝑙𝜎𝑘𝑙   [4] 

The effective normal component n (negative if compressional) and the shear component  

will respectively be: 

 𝜎𝑛 = 𝜎𝑧′𝑧′ + 𝑝                  [5] 

𝜏 = √𝜎𝑥′𝑧′
2 + 𝜎𝑦′𝑧′

22
          [6] 

Where p represents the scalar field pore pressure: it is invariant for rotation and it does not 

affect the shear stress magnitude. 

The returning mapping algorithm is used for the non-associated elasto-plasticity model. The 

yield function F is defined as: 

𝐹 =  𝜏 + 𝜎𝑛
′ tan(𝜑𝑗) − 𝑐0𝑗

     [7] 

where j and c0j define respectively the friction angle and the cohesion of the plane of 

weakness.  

To define the shear plastic flow the potential function G is used, with j being the dilation 

angle of the plane of weakness: 

𝐺 =  𝜏 + 𝜎𝑛 tan(𝜔𝑗)     [8] 

The trial stress increment is calculated as pure elastic stress increment, considering the strain 

tensor 𝜀̿and the fourth-order stiffness tensor E. 

∆𝜎𝑖𝑗 = 𝑬𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙)       [9] 

If the yield function F  with the trial stress is positive, the stress will have be recalculated taking 

into account a plastic correction: 

∆𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙 (∆𝜀𝑘𝑙 − ∆𝜆 𝜕𝐺
𝜕𝜎𝑖𝑗

⁄ )     [10] 

Where  is the term resulting from the interplay between the shear plastic flow function and 

the yield function:  



∆𝜆 =
(𝜕𝐹

𝜕𝜎𝑖𝑗
⁄ )𝐸𝑖𝑗𝑘𝑙∆𝜀𝑘𝑙

(𝜕𝐹
𝜕𝜎𝑖𝑗
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                                                         [11] 

The resulting components of stress can be then expressed in the local coordinate system and 

back transformed to the initial Cartesian reference system xyz : 

𝜎̿ = 𝑨𝑇𝜎̿′𝑨                                                                      [12]      

2. Verification 
Assuming a 2-d stress state determined by the principal stresses 1 and 2, where the plane of 

weakness is at an angle  with the major principal stress, rupture takes place if 1 reaches a 

certain critical value C. Jaeger et al. (2009) found a closed form solution to express the critical 

value C for the rock matrix: 

𝜎𝑐 = 𝑁𝜃𝜎2 − 2𝑐0√𝑁𝜃                                                          [13] 

Where 𝑁𝜃 =
1+sin (𝜃0)

1−𝑠𝑖𝑛(𝜃0)
 . Slip failure will happen on the plane of weakness for a critical value C: 

𝜎𝑐 = 𝜎2 −
2(𝑐𝑝𝑤−𝜎2 tan𝜃𝑝𝑤) 

(1−tan𝜃𝑝𝑤 tan𝛽) sin2𝛽
                                                         [14] 

For a given stress state and a given plane of weakness orientation, rupture would happen in 

the rock matrix or along the plane of weakness according to which of the C calculated in [13] 

and [14] is the smallest.  

To test the validity of the implementation, we numerically reproduce a set of uniaxial (i.e. 

2=0) drained compressive test performed on a cylindrical sample with varying dip of the plane 

of weakness, comparing the critical stress value c (which we can identify then as the uniaxial 

compressive strength UCS of the sample) as computed by [13] and [14] and the UCS 

numerically obtained. In Table 1 the parameters characterizing the synthetic rock sample are 

noted, while in Figure 1 the analytical and the numerical UCS values are compared.  

The tests are assumed to happen in fully drained conditions, during compression of the sample 

there is no pressure build-up and therefore stress condition are homogeneous across the 

sample. 

Table 1. Parameter of the synthetic rock sample to test UCS 

Parameter (unit) Matrix Plane of weakness 

Bulk  modulus (MPa) 100 --- 



Shear modulus (MPa) 70 --- 

Cohesion (kPa) 2 1 

Friction angle (o) 40 30 

Tensile strength (kPa) 0.5 0.5 

 

 

Figure 1. Resulting UCS from numerical simulations (dots) and comparison with analytical 

solution: the failure may happen along the weakness plane only for certain dip angles, 

otherwise the UCS along the plane of weakness [14] is larger than the UCS of the matrix [13] 

The numerical results shows good agreement with respect to the theory, both in predicting the 

variation in UCS value and on the failure character, discriminating as expected between plastic 

behavior along the plane of weakness or due to the rock matrix. 

3. Syntax 
In the .msp file, the following block for a material presenting a plane of weakness must be 

included 

$PLASTICITY //FOR THE MATRIX material 
   MOHR-COULOMB    
      2.e3          //cohesion 
      40 //friction angle 
      0.0 //dilation angle          
      1e9 //tensile strength 
      0 //curve number for strain hardening of cohesion 
      0 //curve number for strain hardening of friction angle    
  $WEAKNESS_PLANE //FOR THE PLANE OF WEAKNESS (pow) 
MICRO_STRUCTURE_TENSOR 1 1 1  //needed for stress rotation, leave it like this 
WEAKPLANE_NORM nx ny nz     
      1.e3        // pow cohesion 

//normal vector to the plane of weakness in OGS coordinates  

      40 //pow friction angle 
      0.0 //pow dilation angle          
      1e9 //pow tensile strength (tensile failure not implemented yet) 
      0 //pow curve number for strain hardening of cohesion 
      0 //pow curve number for strain hardening of friction angle    



4. Benchmark 
In the benchmark zip file, there are included the input files and the python script to reproduce 

the Figure 1. Run every simulation, then launch the script compare_num-analyt.py 
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